GLYCOSYLATIONS WITH N-FORMYLAMINO SUGARS: A NEW APPROACH TO 2'-DEOXY- β -DISACCHARIDES¹

Paolo Tavecchia, Michel Trumtel, Alain Veyrières and Pierre Sinaÿ* Ecole Normale Supérieure, Laboratoire de Chimie, UA 1110, 24 rue Lhomond, 75231 Paris Cédex 05, France

Abstract: Various derivatives of N-formyl glucosamine (β -acetate, α -chloride, α -trichloroacetimidate) are used as glycosyl donors. The resulting disaccharides are smoothly deaminated into the corresponding 2'-deoxy- β -disaccharides through intermediate isonitriles by radical reduction.

Barton <u>et al</u>.² reported in 1980 the radical deamination of 1,3,4,6tetra-<u>O</u>-acetyl-2-deoxy-2-formamido- β -D-glucopyranose <u>1</u>³ as an elegant entry to 1,3,4,6-tetra-<u>O</u>-acetyl-2-deoxy- β -D-glucopyranose. We thus decided to explore the β -glycosylating ability of <u>1</u> and derivatives as a nice adjunct to the Barton deamination, since it would open a novel route to 2'-deoxy- β -disaccharides, the importance of which has been stressed in the preceding letter of this issue.

Compound <u>1</u> was first converted⁴ into either the crystalline α -chloride 2 or the α -trichloroacetimidate <u>3</u> as shown in Scheme I :

SCHEME I

Reagents: *i*) $CH_3COC1-HC1$, 25°C, 12 h (80%); *ii*) $C_6H_5CH_2NH_2$, THF, 25°C, 12 h (84%); *iii*) $CC1_3CN$, DBU, 4 Å MS, CH_2C1_2 , 0°C, 30 min (95%).

Depending on the structure of the glycosyl acceptor, the most appropriate glycosylation procedure was selected (either A, B or C) (Table I). The β -acetate <u>1</u> (method A) appeared as a good glycosyl donor in the presence of trimethylsilyltriflate with secondary alcohols <u>4</u> and <u>5</u>. The α -chloride <u>2</u> (method B) acted as a good donor in the presence of silver triflate with primary alcohols <u>7</u> and 1,2:3,4-di-<u>Q</u>-isopropylidene- α -D-galactopyranose. In the case of alcohol <u>6</u>, α -trichloroacetimidate <u>3</u> (method C) appeared as a TABLE 1

Method A: ROH (1 equiv.), β -acetate 1 (2 equiv.), TMSOTF (3 equiv.), 4 Å MS, CH₂Cl₂, room temperature until there was no more evolution as indicated by t.l.c. (6-48 h). **Method** B: ROH (1 equiv.), α -chloride 2 (1.7 equiv.), AgOTF (2 equiv.), 4 Å MS, CH₂Cl₂ room temperature until there was no more evolution (24-48 h). **Method** C: ROH (1 equiv.), α -trichloroacetimidate 3 (1.2 equiv.), TMSOTF (1.2 equiv.), 4 Å MS, CH₂Cl₂, room temperature, 24 h. reasonable glycosyl donor, although the yield was rather modest⁶. The β -stereocontrol was attributed to the participating property of the *N*-formyl group⁸. The 2'-deoxy-2'-formamido disaccharides were deaminated according to Scheme II with total yields in the range of 65-89% (see Table I).

SCHEME II

Reagents: i) POCl₃, NEt₃, CH₂Cl₂⁹; ii) Bu₃SnH, toluene, reflux.²

We believe that this new approach and the one outlined in the preceding letter offer a rather general solution to the important problem of the practical synthesis of 2'-deoxy- β -disaccharides.

References and notes

- 1 Part of this work was presented at the <u>4th European Carbohydrate</u> <u>Symposium</u>, Darmstadt (Germany), A-122, 1987.
- 2 D.H.R. Barton, G. Bringmann, G. Lamotte, W.B. Motherwell, R.S.H. Motherwell and A.E.A. Porter, <u>J. Chem. Soc., Perkin Trans. I</u>, 2657 (1980).
- 3 C.G. Greig, D.H. Leaback and P.G. Walker, <u>J. Chem. Soc</u>., 879 (1961).
- 4 All new compounds gave satisfactory microanalytical and spectral data. Values of $[\alpha]_D$ and δ_H or δ_C were measured for CHCl₃ and CDCl₃ solutions at 20° and 25°C, respectively, unless otherwise stated. <u>2</u> (80%): m.p. 105-107°C (CH₂Cl₂-benzene), $[\alpha]_D$ +106°; δ_H : 6.20 and 6.15 (1 H, 2 d, $J_{1,2}$ 3.5 Hz, H-1 of a 1:9 cis-trans mixture)⁵. <u>3</u> (80%): $[\alpha]_D$ +87°; δ_H : 6.46 (1 H, d, $J_{1,2}$ 3.5 Hz, H-1).
- ⁵ ¹H-N.m.r. spectra of N-formyl derivatives of glucosamine reveal that these compounds exist in both the *cis* and *trans* configurations about the central C-N bond; L.A. Laplanche and M.T. Rogers, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>B6</u>, 337 (1964).
- 6 Compounds <u>6</u> and <u>14</u> are partially anomerized at their reducing end under the acidic conditions of the glycosylations. It was therefore found more advantageous to glycosylate <u>6</u> (or any acid sensitive alcohol) with the 3,4,6-tri-0-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl trichloroacetimidate⁷ in the presence of TMSOTF (-70°C, a few min, 93%). The following sequential treatment: *i*) NaOMe; *ii*) N₂H₄, ethanol, reflux; *iii*) p-nitrophenyl formate, dioxane-water; *iv*) acetic anhydride-pyridine, gave <u>14</u> (85%).

- 7 G. Grundler and R.R. Schmidt, <u>Carbohydr. Res.</u>, <u>135</u>, 203 (1985).
- 8 An oxazoline was isolated in 86% yield when the chloride 2 was treated with silver triflate, with the reaction mixture being neutralized with triethylamine after 4 h at 20°C; $[\alpha]_D$ +23°; δ_H : 7.20 (1 H, d, $J_{2,N=CH}$ 2.5 Hz, N=CH), 6.08 (1 H, d, $J_{1,2}$ 7.5 Hz, H-1), 5.36 (1 H, dd, $J_{2,3}$ 2.8, $J_{3,4}$ 2.2 Hz, H-3), 4.96 (1 H, ddd, $J_{2,4}$ 1.1, $J_{4,5}$ 9.0 Hz, H-4).
- 9 U. Schöllkopf, R. Schröder and D. Stafforst, <u>Liebigs Ann. Chem</u>., 44 (1974); G.D. Hartman and L.M. Weinstock, <u>Org. Synth.</u>, <u>59</u>, 182 (1979).
- 10 <u>4</u>: m.p. 77°C (diisopropyl ether), $[\alpha]_D$ -38°, was obtained by selective benzoylation of benzyl 2,4-di-0-benzyl- β -D-galactopyranoside¹¹ with benzoyl cyanide.
- 11 S. David, C.A. Johnson and A. Veyrières, <u>Carbohydr. Res.</u>, <u>28</u>, 121 (1973).
- 12 See the preceding letter of this issue for the preparation of 5, 6 and 7.
- 13 Selected physical data for disaccharides:

<u>8</u>: m.p. 157-159°C (ethanol), $[\alpha]_D$ -55°; δ_C : 102.06, 101.97 and 101.93 (C-1 and C-1' of a cis-trans mixture).

<u>9</u>: $[\alpha]_{D}$ -25°; δ_{H} (C₈D₆): 4.44 (1 H, d, $J_{1',2'}$ 7.5 Hz, H-1').

<u>11</u>: m.p. 160-162°C (methanol), $[\alpha]_D$ -28°; δ_C : 100.23 and 100.13 (C-1').

<u>12</u>: $[\alpha]_D$ +14°; δ_H (C₆D₆): 4.24 (1 H, d, $J_{1',2'}$ 8.0 Hz, H-1').

 $\frac{13}{J_{1^{\prime},2^{\prime}eq}} \stackrel{+6^{\circ}; \ \delta_{H}}{=} (C_{6}D_{6}): 4.70 \ (1 \ H, \ dd, \ J_{1^{\prime},2^{\prime}eq} \ 2.0, \ J_{1^{\prime},2^{\prime}eq} \ 10.0 \ Hz, \ H-1^{\prime}).$

<u>14</u>: m.p. 202-208°C (hexane-acetone), $[\alpha]_D$ +2°; δ_C : 109.39 and 104.44 (C-1').

<u>15</u>: $[\alpha]_D$ +34°; δ_H (C₆D₆): 4.80 (1 H, d, $J_{1',2'}$ 8.0 Hz, H-1').

 $\frac{16}{J_{1',2'ax}} = 0.2^{\circ}; \delta_{H} (C_{6}D_{6}): 4.81 (1 H, dd, J_{1',2'eq} 2.0, J_{1',2'ax} 9.5 Hz, H-1').$

<u>17</u>: m.p. 185-186°C (ethanol), $[\alpha]_D$ +12°; δ_C : 101.20 and 100.16 (C-1').

<u>18</u>: $[\alpha]_D$ +34°; δ_H : 4.46 (1 H, d, $J_{1',2'}$ 8.0 Hz, H-1').

20: m.p. 143-144°C (hexane-acetone), $[\alpha]_D$ -67°; δ_H : 4.80 (1 H, d, $J_{1',2'}$ 8.5 Hz, H-1'); δ_C : 101.92 and 101.01 (C-1').

<u>21</u>: $[\alpha]_p$ -28°: δ_H : 4.87 (1 H, d, $J_{1',2'}$ 8.0 Hz, H-1').

<u>22</u>: m.p. 115°C (diisopropyl ether), $[\alpha]_D = 68^\circ$; δ_H : 4.30 (1 H, dd, $J_{1^+, 2^+eq}$ 2.0, $J_{1^+, 2^+ex}$ 9.5 Hz, H=1').

(Received in France 13 February 1989)